<
>
Retour à la liste

Data Mining et statistique décisionnelle

La science des données


Auteurs : TUFFERY Stéphane

TUFFERY Stéphane

Stéphane TUFFÉRY est responsable du département de data science d’un grand groupe bancaire. Il est professeur associé à l’Université de Rennes, où il enseigne la data science, le machine learning et le deep learning. Il a publié dans la même collection Data Mining et statistique décisionnelle et Big Data, machine learning et apprentissage profond, qui ont été traduits en anglais.

 


Commentaire : 

5e edition


ISBN : 9782710811800
broché      17 x 24 cm      934 pages
Date de publication : Octobre 2017



Le data mining et la data science sont de plus en plus répandus dans les entreprises et les organisations soucieuses d’extraire l’information pertinente de leurs bases de données, qu’elles peuvent utiliser pour expliquer et prévoir les phénomènes qui les concernent (risques, production, consommation, fidélisation…).
Cette cinquième édition, actualisée et augmentée de 90 pages, fait le point sur le data mining, ses méthodes, ses outils et ses applications, qui vont du scoring jusqu’au text mining, objet d’un chapitre complètement remanié. Nombre de ses outils appartiennent à l’analyse des données et à la statistique « classiques » (analyse factorielle, classification automatique, analyse discriminante, régression logistique, modèles linéaires généralisés, régression pénalisée, régression clusterwise…) mais certains sont plus spécifiques au data mining, comme les réseaux de neurones, les algorithmes génétiques, les SVM, les arbres de décision, les forêts aléatoires, le boosting et la détection des règles d’associations. Les avancées les plus récentes du machine learning et les applications les plus actuelles des Big Data sont présentées, qui vont des algorithmes de reconnaissance d’image aux méthodes de plongement de mots en text mining. Les chapitres sur les réseaux de neurones et les SVM sont illustrés par la reconnaissance de l’écriture manuscrite.
Ces outils sont disponibles dans des logiciels de plus en plus puissants et complets, à commencer par le logiciel libre R, que nous comparons en détail aux logiciels SAS et IBM SPSS dans un chapitre spécifique. Ces logiciels sont utilisés pour illustrer par des exemples précis les explications théoriques données.
Les aspects méthodologiques vont de la conduite des projets jusqu’aux facteurs de réussite et aux pièges à éviter, en passant par l’évaluation et la comparaison des modèles, leur intégration dans les processus opérationnels. Un chapitre est consacré à une étude de cas complète de credit scoring, de l’exploration des données jusqu’à l’élaboration de la grille de score.


Table des matières :


1. Panorama du data mining et de la data science. 2. Le déroulement d’une étude de data mining. 3. L’exploration et la préparation des données. 4. L’utilisation des données commerciales et géodémographiques. 5. Les logiciels de statistique, de data mining et machine learning. 6. Panorama des méthodes de statistique et de data mining. 7. L’analyse factorielle. 8. Les réseaux de neurones artificiels. 9. Les méthodes de classification automatique. 10. La détection des règles d’associations. 11. Les méthodes de classement et de régression. 12. L’analyse discriminante linéraire et ses généralisations. 13. Le modèle linéaire et ses généralisations. 14. Le modèle logistique et ses généralisations. 15. Les arbres de décisions. 16. Les autres modèles prédictifs. 17. Les méthodes d’agrégation de modèles. 18. Une application du data mining : le scoring. 19. Les facteurs de succès d’un projet de data mining. 20. Le text mining. 21. Le web mining. Annexes. Bibliographie. Index.

Ouvrages du même auteur
Ouvrages du même thème
Approches statistiques du risque Approches statistiques du risque
Mai 2014
DROESBEKE Jean-Jacques, SAPORTA Gilbert, THOMAS-AGNAN Christine
Ajouter au panier Ajouter au panier
45 €
Analyse statistique des données longitudinales Analyse statistique des données longitudinales
Août 2010
DROESBEKE Jean-Jacques, SAPORTA Gilbert
Ajouter au panier Ajouter au panier
36 €
Méthodes bayésiennes en statistique Méthodes bayésiennes en statistique
Mai 2002
DROESBEKE Jean-Jacques, FINE Jeanne, SAPORTA Gilbert
Ajouter au panier Ajouter au panier
97 €