<
>
Retour à la liste

Apprentissage statistique et données massives


Auteurs : MAUMY-BERTRAND Myriam

MAUMY-BERTRAND Myriam

, SAPORTA Gilbert

SAPORTA Gilbert

Ingénieur ECP, Docteur ès Sciences

Professeur émérite de statistique appliquée au Conservatoire National des Arts et Métiers

Domaine de recherches : analyse des données

Auteur de plus de 100 articles et  communications, G. Saporta a publié et participé à la rédaction de 15 ouvrages :
- Probabilités, analyse des données et statistiques (Ed. Technip)
- Plans d’expériences. Applications à l’entreprise (Ed. Technip)
- Méthodes bayesiennes en statistique (Ed. Technip)
- Modèles statistiques pour données qualitatives (Ed. Technip)
- Analyse statistique des données spatiales  (Ed. Technip)
- Analyse statistique des données longitudinales  (Ed. Technip)
- Approches non paramétriques en régression  (Ed. Technip)
- Modèles à variables latentes et modèles de mélange  (Ed. Technip)
- Approches statistiques du risque  (Ed. Technip)
- Méthodes robustes en statistique  (Ed. Technip)
- The Multiple Facets of Partial Least Squares Methods (Springer)
- Model Choice and Model Aggregation (Ed. Technip)
- L’analyse des données (PUF)
- Multivariate Quality Control (Physica Verlag)
- Apprentissage statistique et données massives (Ed. Technip)


Informations complémentaires :
Président d’honneur de la Société française de statistique
Vice président de l’Institut international de statistique de 2005 à 2007
Président de l’ IASC (International Association for Statistical Computing) de 2005-2007

Page personnelle: http://cedric.cnam.fr/~saporta/

, THOMAS-AGNAN Christine

THOMAS-AGNAN Christine


ISBN : 9782710811824
broché      16 x 24 cm      536 pages
Date de publication : Mai 2018



La numérisation du monde a pour conséquence la mise à disposition de masses de données inédites, notamment celles provenant du web.
La statistique qui s’est développée autrefois dans un contexte de rareté des données fait face à de nouveaux défis. Donner du sens aux données, développer des algorithmes prédictifs sans nécessairement avoir de modèle génératif, tels sont quelques-uns des objectifs de l’apprentissage statistique. L’apport d’autres disciplines – informatique et optimisation en particulier – est essentiel compte tenu de la nécessité de traiter rapidement les volumes de données impliqués.
On distingue l’apprentissage supervisé, où l’objectif est de prévoir une réponse à partir de prédicteurs, de l’apprentissage non supervisé, qui recherche des structures et des formes sans chercher à prévoir une réponse particulière. Depuis les réseaux de neurones jusqu’aux forêts aléatoires, en passant par les séparateurs à vaste marge (SVM), de nombreux algorithmes ont été développés, ne reposant que faiblement sur des hypothèses probabilistes. Dans ce contexte, la validation, la capacité de généralisation à de nouvelles données et le passage à l’échelle sont donc essentiels.


Cet ouvrage est le fruit de la collaboration entre spécialistes réputés. Sylvain Arlot (Université Paris Sud), Philippe Besse (INSA de Toulouse), Stéphane Canu (INSA de Rouen), Jean-Michel Poggi (Université Paris Descartes & LMO, Université Paris-Sud Orsay), Emmanuel Viennet (Université Paris 13) et Nathalie Villa-Vialaneix (INRA, Toulouse) réunis à l’occasion des 17es Journées d’étude en statistique organisées par la SFdS. Le lecteur y trouvera une synthèse des fondements et des travaux les plus récents dans le domaine de l’apprentissage statistique, avec des applications dans des domaines variés.


Table des matières :


1. Une brève histoire de l’apprentissage. 2. Fondamentaux de l’apprentissage statistique. 3. Validation croisée. 4. Risque et choix de modèles en apprentissage – Exemples. 5. Introduction à l’optimisation pour l’apprentissage statistique. 6. SVM. 7. Apprentissage connexionniste. 8. Arbres CART et Forêts aléatoires – Importance et sélection de variables. 9. Analyse des réseaux sociaux. 10. Systèmes de recommandation sociaux. 11. Méthodes pour l’apprentissage de données massives. 12. Apprentissage de Données Massives – Cas d’usage. Bibliographie. Index.

Ouvrages du même auteur
Analyse statistique des données longitudinales Analyse statistique des données longitudinales
Août 2010
DROESBEKE Jean-Jacques, SAPORTA Gilbert
Ajouter au panier Ajouter au panier
36 €
Méthodes robustes en statistique Méthodes robustes en statistique
Janvier 2015
DROESBEKE Jean-Jacques, SAPORTA Gilbert, THOMAS-AGNAN Christine
Ajouter au panier Ajouter au panier
35 €
Model Choice and Model Aggregation Model Choice and Model Aggregation
Septembre 2017
BERTRAND Frédéric, DROESBEKE Jean-Jacques, SAPORTA Gilbert, THOMAS-AGNAN Christine
Ajouter au panier Ajouter au panier
55 €
Données manquantes Données manquantes
Juin 2022
GÉGOUT-PETIT Anne, MAUMY-BERTRAND Myriam, SAPORTA Gilbert, THOMAS-AGNAN Christine
Ajouter au panier Ajouter au panier
35 €
Ouvrages du même thème
Approches non paramétriques en régression Approches non paramétriques en régression
Janvier 2011
DROESBEKE Jean-Jacques, SAPORTA Gilbert
Ajouter au panier Ajouter au panier
40 €
Modèles statistiques pour données qualitatives Modèles statistiques pour données qualitatives
Mai 2005
DROESBEKE Jean-Jacques, LEJEUNE Michel, SAPORTA Gilbert
Ajouter au panier Ajouter au panier
53 €
Plans d'expériences Plans d'expériences
1997
DROESBEKE Jean-Jacques, FINE Jeanne, SAPORTA Gilbert
Ajouter au panier Ajouter au panier
81 €