<
>
Retour à la liste

Model Choice and Model Aggregation


Auteurs : BERTRAND Frédéric

BERTRAND Frédéric

, DROESBEKE Jean-Jacques

DROESBEKE Jean-Jacques

Jean-Jacques Droesbeke est professeur à l’Université Libre de Bruxelles. Membre actif de la Société Française de Statistique, il participe à divers organes de gestion (revues, groupes spécialisés, Journées de Statistique…).

, SAPORTA Gilbert

SAPORTA Gilbert

Ingénieur ECP, Docteur ès Sciences

Professeur émérite de statistique appliquée au Conservatoire National des Arts et Métiers

Domaine de recherches : analyse des données

Auteur de plus de 100 articles et  communications, G. Saporta a publié et participé à la rédaction de 15 ouvrages :
- Probabilités, analyse des données et statistiques (Ed. Technip)
- Plans d’expériences. Applications à l’entreprise (Ed. Technip)
- Méthodes bayesiennes en statistique (Ed. Technip)
- Modèles statistiques pour données qualitatives (Ed. Technip)
- Analyse statistique des données spatiales  (Ed. Technip)
- Analyse statistique des données longitudinales  (Ed. Technip)
- Approches non paramétriques en régression  (Ed. Technip)
- Modèles à variables latentes et modèles de mélange  (Ed. Technip)
- Approches statistiques du risque  (Ed. Technip)
- Méthodes robustes en statistique  (Ed. Technip)
- The Multiple Facets of Partial Least Squares Methods (Springer)
- Model Choice and Model Aggregation (Ed. Technip)
- L’analyse des données (PUF)
- Multivariate Quality Control (Physica Verlag)
- Apprentissage statistique et données massives (Ed. Technip)


Informations complémentaires :
Président d’honneur de la Société française de statistique
Vice président de l’Institut international de statistique de 2005 à 2007
Président de l’ IASC (International Association for Statistical Computing) de 2005-2007

Page personnelle: http://cedric.cnam.fr/~saporta/

, THOMAS-AGNAN Christine

THOMAS-AGNAN Christine


ISBN : 9782710811770
broché      160 x 240 mm      372 pages
Date de publication : Septembre 2017



For over fourty years, choosing a statistical model thanks to data consisted in optimizing a criterion based on penalized likelihood (H. Akaike, 1973) or penalized least squares (C. Mallows, 1973). These methods are valid for predictive model choice (regression, classification) and for descriptive models (clustering, mixtures). Most of their properties are asymptotic, but a non asymptotic theory has emerged at the end of the last century (Birgé-Massart, 1997). Instead of choosing the best model among several candidates, model aggregation combines different models, often linearly, allowing better predictions. Bayesian statistics provide a useful framework for model choice and model aggregation with Bayesian Model Averaging.

In a purely predictive context and with very few assumptions, ensemble methods or meta-algorithms, such as boosting and random forests, have proven their efficiency.

This volume originates from the collaboration of high-level specialists: Christophe Biernacki (Université de Lille I), Jean-Michel Marin (Université de Montpellier), Pascal Massart (Université de Paris-Sud), Cathy Maugis-Rabusseau (INSA de Toulouse), Mathilde Mougeot (Université Paris Diderot), and Nicolas Vayatis (École Normale Supérieure de Cachan) who were all speakers at the 16th biennal workshop on advanced statistics organized by the French Statistical Society. In this book, the reader will find a synthesis of the methodologies’ foundations and of recent work and applications in various fields.

The French Statistical Society (SFdS) is a non-profit organization that promotes the development of statistics, as well as a professional body for all kinds of statisticians working in public and private sectors. Founded in 1997, SFdS is the heir of the Société de Statistique de Paris, established in 1860. SFdS is a corporate member of the International Statistical Institute and a founding member of FENStatS—the Federation of European National Statistical Societies.


Table des matières :


1. A Model Selection Tale. 2. Model’s Introduction. 3. Non Linear Gaussian Model Selection. 4. Bayesian Model Choice. 5. Some Computational Aspects of Bayesian Model Choice. 6. Randomization and Aggregation for Predictive Modeling with Classification Data. 7. Mixture Models. 8. Calibration of Penalties. High Dimensional Clustering. 10. Clustering of Co-expressed Genes. 11. Forecasting the French National Electricity Consumption: from Sparse Models to Aggregated Forecasts.

Ouvrages du même auteur
Données manquantes Données manquantes
Juin 2022
GÉGOUT-PETIT Anne, MAUMY-BERTRAND Myriam, SAPORTA Gilbert, THOMAS-AGNAN Christine
Ajouter au panier Ajouter au panier
35 €
Les nombres au quotidien Les nombres au quotidien
Novembre 2016
DROESBEKE Jean-Jacques, VERMANDELE Catherine
Ajouter au panier Ajouter au panier
24 €
Statistique et causalité Statistique et causalité
Septembre 2021
BERTRAND Frédéric, SAPORTA Gilbert, THOMAS-AGNAN Christine
Ajouter au panier Ajouter au panier
35 €
Approches non paramétriques en régression Approches non paramétriques en régression
Janvier 2011
DROESBEKE Jean-Jacques, SAPORTA Gilbert
Ajouter au panier Ajouter au panier
45.49 €
Ouvrages du même thème
Econométrie Econométrie
Janvier 2009
CASIN Philippe
Ajouter au panier Ajouter au panier
17 €
Les nombres au quotidien Les nombres au quotidien
Novembre 2016
DROESBEKE Jean-Jacques, VERMANDELE Catherine
Ajouter au panier Ajouter au panier
24 €